当前位置:首页 > 行业动态 > 未来5年光通信系统技术发展趋势分析
未来5年光通信系统技术发展趋势分析
作者:广东藤友通信科技有限公司 来源:广东藤友通信科技有限公司   发布时间:2016-03-23 查看次数:

一、光通信SDN走进2.0时代,与云、大数据技术相融合

      SDN是公认的光通信发展趋势,通过引入控制与转发分离的开放架构,能够显著提升网络能力,并已开始在现网上逐步部署。但随着SDN的逐步部署和网络流量的不断增加,SDN控制器应用的部署灵活性、数据存储、处理能力、安全性及超大流量下的网络稳定性都将受到巨大挑战。

      在未来3-5年,SDN技术将进入2.0时代,SDN开放的网络架构与云、大数据技术结合,以云的方式部署控制和应用,用大数据技术分析和预测流量将成为SDN2.0的主要特征。通过上述技术的引入,可以实现SDN解决方案的安全弹性部署,保证SDN对数据存储、数据处理的高要求,并多维度预测网络流量趋势,从而进一步提升网络的智能化和敏捷性,在大流量环境下保证客户体验。

二、硅光子技术

      硅光子技术利用CMOS微电子工艺实现光子器件的集成制备,该技术结合了CMOS技术的超大规模逻辑、超高精度制造的特性和光子技术超高速率、超低功耗的优势。是一种能够解决长技术演进与成本矛盾的颠覆性技术。
由于光和电采用分立方式,光子与电子技术遵循各自的发展路线,目前光通信系统在功耗、成本、集成度方面遇到提升瓶颈。
目前多项硅光子关键技术已被相继取得突破,预计在三年内将会开始商用。

三、高速接入,多维复用和相干技术大显身手

      光通信技术中的复用维度包括时分、波分、频分、码分、模分等。目前40G PON是采用了时分和波分两维复用,这也是100G PON的可行方式之一。业界将探索上述更多维度的组合,为用户提供更大的带宽。此外,在接收端采用相干接收方式,可在一根光纤承载超过1000个波长,每波长1G/10G,无源传输距离达到100km,实现T比特接入。为用户提供更大带宽、更低时延的接入服务,为运营商提供高效和低运维成本的网络。

      互联网新应用层出不穷,需要更大带宽支撑井喷式增长的数据需求,政企大客户、高端社区用户将需要独享波长入户,以及部分场景下会有长距离高带宽低时延接入需求。

      40G TWDM-PON将在五年内启动商用之旅,更多维复用和相干技术也是研究热点。

四、IP与光网络深度融合提升超大容量路由

      当前通信网络采用多层多域网络承载业务,设备种类繁多,海量数据的分组处理能力呈指数级别提高,同时对超大容量路由运算能力提出越来越高的要求,导致机房空间紧张、能耗高、效率低。IP与光网络的融合是解决问题的有效方式之一。

      IP与光网络融合可以通过统一交换内核技术来实现,具有分组/ODUk/VC集中交换功能,从而减少网络层次、节省网络投资、降低维护成本,实现网络节点集约化。通过提高单槽位线卡转发能力和采用多框集群技术,可以大幅提升单节点转发能力;通过多核处理器、分布式软件架构、模块化管理等技术,可实现千万级别路由表管理。

      涵盖骨干、汇聚和接入网络的IP与光融合,具有千万级别路由表项的超大容量路由器,提供全网端到端解决方案,运营商已经展开了试点。

五、基于CDC-F特性光交叉构建下一代光网络

      当前随着100G技术的规模部署,超100G技术的蓬勃发展,WDM/OTN系统的传输容量提升较快,光层的灵活调度和高效处理成为了光网络节点的一个重要需求。

      随着WSS光模块集成度的进一步提升,采用WSS光模块构建的具备CDC-F(Colorless, Directionless, Contentionless, Flex Grid)特性的光交叉组网技术在超大网络节点应用时,因同时拥有超大交换容量、波长及业务灵活调度、低功耗、低时延等关键特性,易于构建灵活、高效的光网络。

      具备CDC-F特性的光交叉技术越来越受到全球运营商的重视,目前已有运营商率先部署,预计近期将会展开更大范围的试点和商用。

六、中短距离城域高速传输直调直检技术

      为了满足骨干网络上千公里长距离传输的要求,目前主流的传输技术是相干传输技术。但是在城市之间的组网,往往传输距离在300公里以下。在这种情况下,如何避免使用相干探测的方式(系统复杂,成本较高),达到良好的传输和组网效果,是现在研究的热门话题。

      为了实现中短距离传输,当前主要的技术主要考虑直接调制、直接探测上。调制方面,可采用的方式很多,包括:PAM-4传输方式、DMT传输方式、单边带传输方式,等等。在接收侧,则采用非相干的方式,使用较少的光电子器件。以达到简化系统和降低成本的效果。

      近几年,多个直调直检技术实验不断进行,通过逐步研究和持续优化,未来3年将会开始试点。

七、走向全光网,从芯片间、板间到机房间的光互联技术

      伴随着大数据和云技术的蓬勃发展,短到芯片片上和片间、长到机柜间和数据中心间的大规模数据交换处理,都渴望高速、稳定、可靠的互联,常规电缆连接将无法应对。

      目前看来,芯片间和板间的解决方案可以利用硅基光电集成来有效实现光互联。机房间互联、机架间互联、机框间互联、机盘间互联可以利用光电转换和光传输技术取代传统的电缆,主要解决方案包括硅基的光电集成、高速VCSEL和直调DFB等。其中硅基光电集成方案具有CMOS工艺兼容,集成度高,成本低的优势。

      未来几年,光互联技术将在芯片内部、芯片间、板间、机柜间、机房间普及应用。

八、绿色通信,光通信技术永远的主题

      随着人们信息消费的不断增加,需要光通信提供的带宽越来越大,消耗的能源越来越多。在能源日趋紧张的今天,如何实现绿色通信成为业界努力的主要方向之一。

为了实现绿色通信,一些新的技术正在或将逐渐被采用,如新能源、高集成度芯片、高效率电源模块、智能风扇、液体制冷、智能流量聚合、硬件休眠、新型材料等技术。

通过上述技术的不断发展和持续优化,光通信设备的每比特能耗将逐渐降低,与环境更为和谐。